English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gross primary productivity of four European ecosystems constrained by joint CO2 and COS flux measurements

MPS-Authors
/persons/resource/persons62486

Migliavacca,  Mirco
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons189169

El-Madany,  Tarek S.
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62444

Kolle,  Olaf
Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Spielmann, F. M., Wohlfahrt, G., Hammerle, A., Kitz, F., Migliavacca, M., Alberti, G., et al. (2019). Gross primary productivity of four European ecosystems constrained by joint CO2 and COS flux measurements. Geophysical Research Letters, 46(10), 5284-5293. doi:10.1029/2019GL082006.


Cite as: https://hdl.handle.net/21.11116/0000-0003-89FF-4
Abstract
Gross primary productivity (GPP), the gross uptake of carbon dioxide (CO2) by plant photosynthesis, is the primary driver of the land carbon sink, which presently removes around one quarter of the anthropogenic CO2 emissions each year. GPP, however, cannot be measured directly and the resulting uncertainty undermines our ability to project the magnitude of the future land carbon sink. Carbonyl sulfide (COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a fashion very similar to CO2, but in contrast to the latter is generally not emitted. Here we use concurrent ecosystem-scale flux measurements of CO2 and COS at four European biomes for a joint constraint on CO2 flux partitioning. The resulting GPP estimates generally agree with classical approaches relying exclusively on CO2 fluxes, but indicate a systematic underestimation under low light conditions, demonstrating the importance of using multiple approaches for constraining present-day GPP.