Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Magnetic bipoles in rotating turbulence with coronal envelope

MPG-Autoren
/persons/resource/persons140514

Warnecke,  Jörn
Max Planck Research Group in Solar and Stellar Magnetic Activity (Mag Activity) – SOLSTAR, Max Planck Institute for Solar System Research, Max Planck Society;
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Losada, I. R., Warnecke, J., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. (2019). Magnetic bipoles in rotating turbulence with coronal envelope. Astronomy and Astrophysics, 621: A61. doi:10.1051/0004-6361/201833018.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-92FF-9
Zusammenfassung
Context. The formation mechanism of sunspots and starspots is not yet fully understood. It is a major open problem in astrophysics.

Aims. Magnetic flux concentrations can be produced by the negative effective magnetic pressure instability (NEMPI). This instability is strongly suppressed by rotation. However, the presence of an outer coronal envelope was previously found to strengthen the flux concentrations and make them more prominent. It also allows for the formation of bipolar regions (BRs). We aim to understand the important issue of whether the presence of an outer coronal envelope also changes the excitation conditions and the rotational dependence of NEMPI.

Methods. We have used direct numerical simulations and mean-field simulations. We adopted a simple two-layer model of turbulence that mimics the jump between the convective turbulent and coronal layers below and above the surface of a star, respectively. The computational domain is Cartesian and located at a certain latitude of a rotating sphere. We investigated the effects of rotation on NEMPI by changing the Coriolis number, the latitude, the strengths of the imposed magnetic field, and the box resolution.

Results. Rotation has a strong impact on the process of BR formation. Even rather slow rotation is found to suppress BR formation. However, increasing the imposed magnetic field strength also makes the structures stronger and alleviates the rotational suppression somewhat. The presence of a coronal layer itself does not significantly reduce the effects of rotational suppression.