English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Scene regularity interacts with individual biases to modulate perceptual stability

MPS-Authors
/persons/resource/persons84484

Li,  Q
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, Q., Meso, A., Logothetis, N., & Keliris, G. (2019). Scene regularity interacts with individual biases to modulate perceptual stability. Frontiers in Neuroscience, 13: 523, pp. 1-11. doi:10.3389/fnins.2019.00523.


Cite as: https://hdl.handle.net/21.11116/0000-0003-9616-B
Abstract
Sensory input is inherently ambiguous but our brains achieve remarkable perceptual stability. Prior experience and knowledge of the statistical properties of the world are thought to play a key role in the stabilization process. Individual differences in responses to ambiguous input and biases towards one or the other interpretation could modulate the decision mechanism for perception. However, the role of perceptual bias and its interaction with stimulus spatial properties such as regularity and element density remain to be understood. To this end, we developed novel bi-stable moving visual stimuli in which perception could be parametrically manipulated between two possible mutually exclusive interpretations: transparently or coherently moving. We probed perceptual stability across three composite stimulus element density levels with normal or degraded regularity using a factorial design. We found that increased density led to the amplification of individual biases and consequently to a stabilization of one interpretation over the alternative. This effect was reduced for degraded regularity, demonstrating an interaction between density and regularity. To understand how prior knowledge could be used by the brain in this task, we compared the data with simulations coming from four different hierarchical models of causal inference. These models made different assumptions about the use of prior information by including conditional priors that either facilitated or inhibited motion direction integration. An architecture that included a prior inhibiting motion direction integration consistently outperformed the others. Our results support the hypothesis that direction integration based on sensory likelihoods maybe the default processing mode with conditional priors inhibiting integration employed in order to help motion segmentation and transparency perception.