Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Characterization of Downfield Resonances and their T2 Relaxation times in Human Brain at 9.4 T

MPG-Autoren
/persons/resource/persons215115

Murali-Manohar,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214688

Borbath,  T
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215127

Wright,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Murali-Manohar, S., Borbath, T., Wright, A., & Henning, A. (2019). Characterization of Downfield Resonances and their T2 Relaxation times in Human Brain at 9.4 T. Poster presented at 27th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2019), Montréal, QC, Canada.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-96C6-4
Zusammenfassung
In this abstract, we report the apparent T2 relaxation times of the downfield peaks in the human brain at 9.4 T. In addition, we look for correlations between different downfield peaks and between downfield and upfield metabolites. Further, concentrations of all downfield resonances after correcting for both water and peak relaxation times are reported for the first time.