Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops


Karpitschka,  Stefan
Group Fluidics in heterogeneous environments, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Marin, A., Karpitschka, S., Noguera-Marin, D., Cabrerizo-Vilchez, M. A., Rossi, M., Kahler, C. J., et al. (2019). Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops. Physical Review Fluids, 4(4): 041601. doi:10.1103/PhysRevFluids.4.041601.

Cite as: https://hdl.handle.net/21.11116/0000-0003-9975-D
Evaporating salty droplets are ubiquitous in nature, in our home and in the laboratory. Interestingly, the transport processes in such apparently simple systems differ strongly from evaporating "freshwater" droplets since convection is partly inverted due to Marangoni stresses. Such an effect has crucial consequences to the salt crystallization process and to the deposits left behind. In this work we show unprecedented measurements that, not only confirm clearly the flow inversion, but also elucidate their impact on the distribution of nonvolatile solutes. Contrary to what has been often reported in the literature, such a flow reversal does not prevent the formation of ring-shaped stains: particles accumulate at the contact line driven solely by the interfacial flow. We can therefore conclude that the classical "coffee-stain effect" is not the only mechanism that can generate ring-shaped stains in evaporating droplets.