English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microscopic theory for the light-induced anomalous Hall effect in graphene

MPS-Authors
/persons/resource/persons222317

Sato,  S.
Center for Computational Sciences, University of Tsukuba;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons198728

McIver,  J. W.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons230818

Tang,  P.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons224134

Jotzu,  G.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons214000

Schulte,  B.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons221951

Hübener,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ), Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevB.99.214302.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sato, S., McIver, J. W., Nuske, M., Tang, P., Jotzu, G., Schulte, B., et al. (2019). Microscopic theory for the light-induced anomalous Hall effect in graphene. Physical Review B, 99(21): 214302. doi:10.1103/PhysRevB.99.214302.


Cite as: https://hdl.handle.net/21.11116/0000-0003-9C0D-0
Abstract
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a nonequilibrium steady state that is well described by topologically nontrivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties.