English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

R1 and R2 characterization of human blood with phase-cycled balanced steady-state free precession (bSSFP)

MPS-Authors
/persons/resource/persons214685

Pérez-Rodas,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192862

Schulz,  H
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216029

Heule,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Pérez-Rodas, M., Schulz, H., Pohmann, R., Scheffler, K., & Heule, R. (2019). R1 and R2 characterization of human blood with phase-cycled balanced steady-state free precession (bSSFP). Poster presented at 27th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2019), Montréal, QC, Canada.


Cite as: http://hdl.handle.net/21.11116/0000-0003-9D0F-D
Abstract
Balanced steady-state free precession (bSSFP) sequences have received increased interest for functional BOLD experiments since, in contrast to conventional EPI-based techniques, they are not prone to geometric distortions in the phase encoding direction. Characterization of measured BOLD signal changes requires consideration of extravascular as well as intravascular contributions. Knowledge about the relaxation rates of human blood is a prerequisite to quantify the intravascular contribution to the BOLD effect. Here, R1 and R2 relaxation rates of blood samples are intrinsically obtained from a series of phase-cycled bSSFP scans to account for the repetition time dependence of R2 due to rapid refocusing.