Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

MPG-Autoren
/persons/resource/persons201014

Belli,  Federico
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
School of Engineering and Physical Sciences, Heriot-Watt University;

/persons/resource/persons200997

Abdolvand,  Amir
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
Nanyang Technological University;

/persons/resource/persons201215

Travers,  John
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
School of Engineering and Physical Sciences, Heriot-Watt University;

/persons/resource/persons201171

Russell,  Philip
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Belli, F., Abdolvand, A., Travers, J., & Russell, P. (2018). Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence. Physical Review A, 97: 013814, pp. 1-5. doi:10.1103/PhysRevA.97.013814.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-9E08-3
Zusammenfassung
We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal
grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ∼300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.