Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Which phonons induce non-equilibrium superconductivity in YBa2Cu3O6.5?

MPG-Autoren
/persons/resource/persons196445

Liu,  B.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133775

Först,  M.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons222262

Fechner,  M.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133789

Nicoletti,  D.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  A.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, University of Oxford, Clarendon Laboratory;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1905.08356.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, B., Först, M., Fechner, M., Nicoletti, D., Porras, J., Keimer, B., et al. (2019). Which phonons induce non-equilibrium superconductivity in YBa2Cu3O6.5?


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-A4EC-A
Zusammenfassung
Terahertz-frequency excitation in the cuprates has been shown to induce non-equilibrium superconducting correlations above the thermodynamic transition temperature, TC. In YBa2Cu3O6+x, this phenomenon has been associated with the nonlinear excitation of certain lattice modes. However, to date it has not been possible to tune the pump wavelength widely to systematically compare the effect of different modes. Aided by a newly developed optical device, we measured the response of YBa2Cu3O6.5 to tuneable driving between 3 and 24 THz, covering all phonon resonances. We show that superconductivity is enhanced only for excitation of the 16.4 THz and 19.2 THz vibrational modes that modulate the position of apical oxygen atoms along the c axis. Other phonons only enhance the dissipation. We argue here that not only the average deformation of the lattice, but also a direct coupling between lattice vibrations and the electronic structure of the CuO2 planes should contribute to enhanced non-equilibrium superconductivity.