English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Replacement of Lys-300 with a glutamine in the NhaA Na+/H+ antiporter of Escherichia coli yields a functional electrogenic transporter

MPS-Authors
/persons/resource/persons145648

Patiño-Ruiz,  Miyer
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137619

Călinescu,  Octavian
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;
Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania;

/persons/resource/persons217651

Karabel,  Mehmet
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137653

Fendler,  Klaus
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Patiño-Ruiz, M., Dwivedi, M., Călinescu, O., Karabel, M., Padan, E., & Fendler, K. (2019). Replacement of Lys-300 with a glutamine in the NhaA Na+/H+ antiporter of Escherichia coli yields a functional electrogenic transporter. The Journal of Biological Chemistry, 294(1), 246-256. doi:10.1074/jbc.RA118.004903.


Cite as: https://hdl.handle.net/21.11116/0000-0003-A5BD-E
Abstract
Much of the research on Na+/H+ exchange has been done in prokaryotic models, mainly on the NhaA Na+/H+-exchanger from Escherichia coli (EcNhaA). Two conserved aspartate residues, Asp-163 and Asp-164, are essential for transport and are candidates for possible binding sites for the two H+ that are exchanged for one Na+ to make the overall transport process electrogenic. More recently, a proposed mechanism of transport for EcNhaA has suggested direct binding of one of the transported H+ to the conserved Lys-300 residue, a salt bridge partner of Asp-163. This contention is supported by a study reporting that substitution of the equivalent residue, Lys-305, of a relatedNa+/H+ antiporter, NapA from Thermus thermophilus, renders the transporter electroneutral. In this work, we sought to establish whether the Lys-300 residue and its partner Asp-163 are essential for the electrogenicity of EcNhaA. To that end, we replaced Lys-300 with Gln, either alone or together with the simultaneous substitution of Asp-163 with Asn, and characterized these transporter variants in electrophysiological experiments combined with H+ transport measurements and stability analysis. We found that K300Q EcNhaA can still support electrogenic Na+/H+ antiport in EcNhaA, but has reduced thermal stability. A parallel electrophysiological investigation of the K305Q variant of TtNapA revealed that it is also electrogenic. Furthermore, replacement of both salt bridge partners in the ion-binding site of EcNhaA produced an electrogenic variant (D163N/K300Q). Our findings indicate that alternative mechanisms sustain EcNhaA activity in the absence of canonical ion-binding residues and that the conserved lysines confer structural stability.