English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice.

MPS-Authors
/persons/resource/persons219165

Franke,  Kristin
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219236

Henry,  Ian
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Singh, R. P., Grinenko, T., Ramasz, B., Franke, K., Lesche, M., Dahl, A., et al. (2018). Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice. Stem cell reports, 10(6), 1908-1919. doi:10.1016/j.stemcr.2018.04.012.


Cite as: https://hdl.handle.net/21.11116/0000-0003-F68E-8
Abstract
The hematopoietic stem cell (HSC) compartment consists of a small pool of cells capable of replenishing all blood cells. Although it is established that the hematopoietic system is assembled as a hierarchical organization under steady-state conditions, emerging evidence suggests that distinct differentiation pathways may exist in response to acute stress. However, it remains unclear how different hematopoietic stem and progenitor cell subpopulations behave under sustained chronic stress. Here, by using adult transgenic mice overexpressing erythropoietin (EPO; Tg6) and a combination of in vivo, in vitro, and deep-sequencing approaches, we found that HSCs respond differentially to chronic erythroid stress compared with their closely related multipotent progenitors (MPPs). Specifically, HSCs exhibit a vastly committed erythroid progenitor profile with enhanced cell division, while MPPs display erythroid and myeloid cell signatures and an accumulation of uncommitted cells. Thus, our results identify HSCs as master regulators of chronic stress erythropoiesis, potentially circumventing the hierarchical differentiation-detour.