English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The FLUXCOM ensemble of global land-atmosphere energy fluxes

MPS-Authors
/persons/resource/persons62425

Jung,  Martin
Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons134634

Koirala,  Sujan
Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62598

Weber,  Ulrich
Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62378

Gans,  Fabian
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62524

Reichstein,  Markus
Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC3083.pdf
(Publisher version), 4MB

Supplementary Material (public)

BGC3083s1.docx
(Supplementary material), 178KB

Citation

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., et al. (2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific Data, 6: 74. doi:10.1038/s41597-019-0076-8.


Cite as: https://hdl.handle.net/21.11116/0000-0003-B28C-6
Abstract
Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly
constrained. Here we use machine learning to merge energy flux measurements from FLUXNET
eddy covariance towers with remote sensing and meteorological data to estimate global gridded net
radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises
147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5°
resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a
full factorial design across machine learning methods, forcing datasets and energy balance closure
corrections. For RS and RS + METEO setups respectively, we estimate 2001–2013 global (±1 s.d.)
net radiation as 75.49 ± 1.39 W m−2 and 77.52 ± 2.43 W m−2, sensible heat as 32.39 ± 4.17 W m−2
and 35.58 ± 4.75 W m−2, and latent heat flux as 39.14 ± 6.60 W m−2 and 39.49 ± 4.51 W m−2 (as
evapotranspiration, 75.6 ± 9.8 × 103 km3 yr−1 and 76 ± 6.8 × 103 km3 yr−1). FLUXCOM products
are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations.