Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Noncovalent Functionalization of Carbon Substrates with Hydrogels Improves Structural Analysis of Vitrified Proteins by Electron Cryo-Microscopy

MPG-Autoren
/persons/resource/persons205532

Neuhaus,  Alexander
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137828

Parey,  Kristian
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons206471

Klusch,  Niklas       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons206473

Murphy,  Bonnie J.       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137764

Kühlbrandt,  Werner       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137853

Rhinow,  Daniel
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Scherr, J., Neuhaus, A., Parey, K., Klusch, N., Murphy, B. J., Zickermann, V., et al. (2019). Noncovalent Functionalization of Carbon Substrates with Hydrogels Improves Structural Analysis of Vitrified Proteins by Electron Cryo-Microscopy. ACS Nano, 13(6), 7185-7190. doi:10.1021/acsnano.9b02651.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-B346-4
Zusammenfassung
In electron cryo-microscopy, structure determination of protein molecules is frequently hampered by adsorption of the particles to the support film material, typically amorphous carbon. Here, we report that pyrene derivatives with one or two polyglycerol (PG) side chains bind to the amorphous carbon films, forming a biorepulsive hydrogel layer so that the number of protein particles in the vitreous ice drastically increases. This approach could be extended by adding a hydrogel-functionalized carbon nanotube network (HyCaNet, the hydrogel again being formed from the PG-pyrene derivatives), which stabilized the protein-containing thin ice films during imaging with the electron beam. The stabilization resulted in reduced particle motion by up to 70%. These substrates were instrumental for determining the structure of a large membrane protein complex.