English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita

MPS-Authors
/persons/resource/persons4116

Reichelt,  Michael
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

GER560.pdf
(Publisher version), 2MB

Supplementary Material (public)

GER560s1.zip
(Supplementary material), 4MB

GER560s2.docx
(Supplementary material), 35KB

Citation

Perfus-Barbeoch, L., Castagnone-Sereno, P., Reichelt, M., Fneich, S., Roquis, D., Pratx, L., et al. (2014). Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Frontiers in Physiology, 5: 211. doi:10.3389/fphys.2014.00211.


Cite as: https://hdl.handle.net/21.11116/0000-0003-B56A-A
Abstract
Root-knot nematodes of the genus Meloidogyne are biotrophic plant parasites that exhibit different life cycles and reproduction modes, ranging from classical amphimixis to obligatory mitotic parthenogenesis (apomixis), depending on the species. Meloidogyne incognita, an apomictic species, exhibits a worldwide distribution and a wide host range affecting more than 3000 plant species. Furthermore, evidences suggest that apomixis does not prevent M. incognita from adapting to its environment in contrast to what is expected from mitotic parthenogenesis that should theoretically produce clonal progenies. This raises questions about mechanisms of genome plasticity leading to genetic variation and adaptive evolution in apomictic animals. We reasoned that epigenetic mechanisms might in part be responsible for the generation of phenotypic variants that provide potential for rapid adaptation. We established therefore a pipeline to investigate the principal carriers of epigenetic information, DNA methylation and post-translational histone modifications. Even if M. incognita possesses the epigenetic machinery i.e., chromatin modifying enzymes, 5-methyl-cytosine and 5-hydroxy-methyl-cytosine content is absent or very weak. In contrast, we demonstrated that the canonical histone modifications are present and chromatin shows typical nucleosome structure. This work is the first characterization of carriers of epigenetic information in M. incognita and constitutes a preamble to further investigate if M. incognita development and its adaptation to plant hosts are under epigenetic control. Our pipeline should allow performing similar types of studies in any non-model organism.