English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs

MPS-Authors
/persons/resource/persons104288

Wicht,  Johannes
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Becker, A., Bethkenhagen, M., Kellermann, C., Wicht, J., & Redmer, R. (2018). Material Properties for the Interiors of Massive Giant Planets and Brown Dwarfs. The Astronomical Journal, 156(4): 149. doi:10.3847/1538-3881/aad735.


Cite as: https://hdl.handle.net/21.11116/0000-0003-B6EE-4
Abstract
We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive ab initio simulations of hydrogen–helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities, including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k 2 and the equidistance, are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as a starting point to obtain material and transport properties for other substellar H–He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.