日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Samplings of Millipedes in Japan and Scarab Beetles in Hong Kong result in five new Species of Pristionchus (Nematoda: Diplogastridae)

MPS-Authors
/persons/resource/persons272157

Herrmann,  M
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Entomo-Nematology Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272929

Yoshida,  K
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272426

Weiler,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Entomo-Nematology Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kanzaki, N., Herrmann, M., Yoshida, K., Weiler, C., Rödelsperger, C., & Sommer, R. (2018). Samplings of Millipedes in Japan and Scarab Beetles in Hong Kong result in five new Species of Pristionchus (Nematoda: Diplogastridae). Journal of Nematology, 50(4), 587-610. doi:10.21307/jofnem-2018-044.


引用: https://hdl.handle.net/21.11116/0000-0003-BA42-1
要旨
The authors describe five new species of Pristionchus from Japan and Hongkong. Scarab beetle samplings in Hongkong identified P. hongkongensis sp. n. and P. neolucani sp. n., representing the first beetle-associated Pristionchus species from China. Surprisingly, samplings of millipedes in Japan revealed a previously unknown association of Pristionchus nematodes with these arthropods. Specifically, the authors found three previously known Pristionchus species, P. arcanus, P. entomophagus, and P. fukushimae on Japanese millipedes. In addition, the authors found three new Pristionchus species on millipedes, which are described as P. riukiariae sp. n., P. degawai sp. n., and P. laevicollis, sp. n., the latter of which was also found on stag beetles. These species are most closely related to P. maxplancki, P. japonicus, and P. quartusdecimus and belong to the pacificus species-complex. The authors describe all species based on morphology, morphometrics, and genome-wide sequence analysis. Mating experiments indicated that all species are reproductively isolated from each other and in contrast to the species of the "pacificus species-complex sensu stricto" they do not form F1 hybrids. The authors describe five new species of Pristionchus from Japan and Hongkong. Scarab beetle samplings in Hongkong identified P. hongkongensis sp. n. and P. neolucani sp. n., representing the first beetle-associated Pristionchus species from China. Surprisingly, samplings of millipedes in Japan revealed a previously unknown association of Pristionchus nematodes with these arthropods. Specifically, the authors found three previously known Pristionchus species, P. arcanus, P. entomophagus, and P. fukushimae on Japanese millipedes. In addition, the authors found three new Pristionchus species on millipedes, which are described as P. riukiariae sp. n., P. degawai sp. n., and P. laevicollis, sp. n., the latter of which was also found on stag beetles. These species are most closely related to P. maxplancki, P. japonicus, and P. quartusdecimus and belong to the pacificus species-complex. The authors describe all species based on morphology, morphometrics, and genome-wide sequence analysis. Mating experiments indicated that all species are reproductively isolated from each other and in contrast to the species of the "pacificus species-complex sensu stricto" they do not form F1 hybrids.