English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus

MPS-Authors
/persons/resource/persons273914

Namdeo,  S
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272920

Moreno,  E
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Evolutionary Genomics and Bioinformatics Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273916

Baskaran,  P
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Evolutionary Genomics and Bioinformatics Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271111

Witte,  H
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Namdeo, S., Moreno, E., Rödelsperger, C., Baskaran, P., Witte, H., & Sommer, R. (2018). Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development, 145(13): dev166272. doi:10.1242/dev.166272.


Cite as: https://hdl.handle.net/21.11116/0000-0003-BA3C-9
Abstract
Sulfation of biomolecules, like phosphorylation, is one of the most fundamental and ubiquitous biochemical modifications with important functions during detoxification. This process is reversible, involving two enzyme classes: a sulfotransferase, which adds a sulfo group to a substrate; and a sulfatase that removes the sulfo group. However, unlike phosphorylation, the role of sulfation in organismal development is poorly understood. In this study, we find that two independent sulfation events regulate the development of mouth morphology in the nematode Pristionchus pacificus. This nematode has the ability to form two alternative mouth morphologies depending on environmental cues, an example of phenotypic plasticity. We found that, in addition to a previously described sulfatase, a sulfotransferase is involved in regulating the mouth-form dimorphism in P. pacificus However, it is unlikely that both of these sulfation-associated enzymes act upon the same substrates, as they are expressed in different cell types. Furthermore, animals mutant in genes encoding both enzymes show condition-dependent epistatic interactions. Thus, our study highlights the role of sulfation-associated enzymes in phenotypic plasticity of mouth structures in Pristionchus.