English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phylotranscriptomics of Pristionchus Nematodes Reveals Parallel Gene Loss in Six Hermaphroditic Lineages

MPS-Authors
/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Evolutionary Genomics and Bioinformatics Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272395

Röseler,  W
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons241465

Prabh,  N
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Evolutionary Genomics and Bioinformatics Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272929

Yoshida,  K
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272426

Weiler,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Entomo-Nematology Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272157

Herrmann,  M
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Entomo-Nematology Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rödelsperger, C., Röseler, W., Prabh, N., Yoshida, K., Weiler, C., Herrmann, M., et al. (2018). Phylotranscriptomics of Pristionchus Nematodes Reveals Parallel Gene Loss in Six Hermaphroditic Lineages. Current Biology, 28(19), 3123-3127. doi:10.1016/j.cub.2018.07.041.


Cite as: https://hdl.handle.net/21.11116/0000-0003-BA30-5
Abstract
Mutation and recombination are main drivers of phenotypic diversity, but the ability to create new allelic combinations is strongly dependent on the mode of reproduction. While most animals are dioecious (i.e., separated male and female sexes), in a number of evolutionary lineages females have gained the ability to self-fertilize [1, 2], with drastic consequences on effective recombination rate, genetic diversity, and the efficacy of selection [3]. In the genus Caenorhabditis, such hermaphroditic or androdioecious lineages, including C. briggsae and C. tropicalis, display a genome shrinkage relative to their dioecious sister species C. nigoni and C. brenneri, respectively [4, 5]. However, common consequences of reproductive modes on nematode genomes remain unknown, because most taxa contain single or few androdioecious species. One exception is the genus Pristionchus, with seven androdioecious species. Pristionchus worms are found in association with scarab beetles in worldwide samplings, resulting in deep taxon sampling and currently 39 culturable and available species. Here, we use phylotranscriptomics of all 39 Pristionchus species to provide a robust phylogeny based on an alignment of more than 2,000 orthologous clusters, which indicates that the seven androdioecious species represent six independent lineages. We show that gene loss is more prevalent in all hermaphroditic lineages than in dioecious relatives and that the majority of lost genes evolved recently in the Pristionchus genus. Further, we provide evidence that genes with male-biased expression are preferentially lost in hermaphroditic lineages. This supports a contribution of adaptive gene loss to shaping nematode genomes following the evolution of hermaphroditism.