Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

MPG-Autoren
/persons/resource/persons199969

De Tomasi,  Guiseppe
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons217286

Khaymovich,  Ivan M.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1805.06472
(Preprint), 20KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

De Tomasi, G., Amini, M., Bera, S., Khaymovich, I. M., & Kravtsov, V. E. (2019). Survival probability in Generalized Rosenzweig-Porter random matrix ensemble. SciPost Physics, 6(1): 014. doi:10.21468/SciPostPhys.6.1.014.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-BAA0-6
Zusammenfassung
We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t), the probability of finding the initial state after time t. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t -> infinity) = k, finite in the thermodynamic limit N -> infinity, which approaches k = R (t -> 0) in this limit.