English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tunable self-healing of magnetically propelling colloidal carpets

MPS-Authors
/persons/resource/persons227777

Meng,  Fanlong
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Massana-Cid, H., Meng, F., Matsunaga, D., Golestanian, R., & Tierno, P. (2019). Tunable self-healing of magnetically propelling colloidal carpets. Nature Communications, 10(1): 2444. doi:10.1038/s41467-019-10255-4.


Cite as: https://hdl.handle.net/21.11116/0000-0003-BACE-4
Abstract
The process of crystallization is difficult to observe for transported, out-of-equilibrium systems, as the continuous energy injection increases activity and competes with ordering. In emerging fields such as microfluidics and active matter, the formation of long-range order is often frustrated by the presence of hydrodynamics. Here we show that a population of colloidal rollers assembled by magnetic fields into large-scale propelling carpets can form perfect crystalline materials upon suitable balance between magnetism and hydrodynamics. We demonstrate a field-tunable annealing protocol based on a controlled colloidal flow above the carpet that enables complete crystallization after a few seconds of propulsion. The structural transition from a disordered to a crystalline carpet phase is captured via spatial and temporal correlation functions. Our findings unveil a novel pathway to magnetically anneal clusters of propelling particles, bridging driven systems with crystallization and freezing in material science.