English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A beta 2-Integrin/MRTF-A/SRF Pathway Regulates Dendritic Cell Gene Expression, Adhesion, and Traction Force Generation

MPS-Authors
/persons/resource/persons78420

Moser,  Markus
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

fimmu-10-01138.pdf
(Publisher version), 8MB

Supplementary Material (public)

4519277.zip
(Supplementary material), 1006KB

Citation

Guenther, C., Faisal, I., Uotila, L. M., Asens, M. L., Harjunpaa, H., Savinko, T., et al. (2019). A beta 2-Integrin/MRTF-A/SRF Pathway Regulates Dendritic Cell Gene Expression, Adhesion, and Traction Force Generation. Frontiers in immunology, 10: 1138. doi:10.3389/fimmu.2019.01138.


Cite as: https://hdl.handle.net/21.11116/0000-0003-E6EC-0
Abstract
beta 2-integrins are essential for immune system function because they mediate immune cell adhesion and signaling. Consequently, a loss of beta(2)-integrin expression or function causes the immunodeficiency disorders, Leukocyte Adhesion Deficiency (LAD) type I and III. LAD-III is caused by mutations in an important integrin regulator, kindlin-3, but exactly how kindlin-3 regulates leukocyte adhesion has remained incompletely understood. Here we demonstrate that mutation of the kindlin-3 binding site in the beta 2-integrin (TTT/AAA-beta 2-integrin knock-in mouse/KI) abolishes activation of the actin-regulated myocardin related transcription factor A/serum response factor (MRTF-A/SRF) signaling pathway in dendritic cells and MRTF-A/SRF-dependent gene expression. We show that Ras homolog gene family, member A (RhoA) activation and filamentous-actin (F-actin) polymerization is abolished in murine TTT/AAA-beta 2-integrin KI dendritic cells, which leads to a failure of MRTF-A to localize to the cell nucleus to coactivate genes together with SRF. In addition, we show that dendritic cell gene expression, adhesion and integrin-mediated traction forces on ligand coated surfaces is dependent on the MRTF-A/SRF signaling pathway. The participation of beta 2-integrin and kindlin-3-mediated cell adhesion in the regulation of the ubiquitous MRTF-A/SRF signaling pathway in immune cells may help explain the role of beta 2-integrin and kindlin-3 in integrin-mediated gene regulation and immune system function.