Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis

MPG-Autoren
/persons/resource/persons227233

Tiwary,  Shivani
Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons227237

Gutenbrunner,  Petra
Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons227241

Salinas Soto,  Favio
Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77870

Cox,  Jürgen
Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tiwary, S., Levy, R., Gutenbrunner, P., Salinas Soto, F., Palaniappan, K. K., Deming, L., et al. (2019). High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. Nature methods, 16(6), 519-525. doi:10.1038/s41592-019-0427-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-DD06-E
Zusammenfassung
Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. However, the generation of fragment ions has not been understood well enough for scientists to estimate fragment ion intensities accurately. Here, we demonstrate that machine learning can predict peptide fragmentation patterns in mass spectrometers with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the analysis of both data-dependent and data-independent acquisition datasets. In the former case, we observe a q-value-dependent increase in the total number of peptide identifications. In the latter case, we confirm that the use of predicted tandem mass spectrometry spectra is nearly equivalent to the use of spectra from experimental libraries.