English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quasi-periodic Fast Propagating Magnetoacoustic Waves during the Magnetic Reconnection Between Solar Coronal Loops

MPS-Authors
/persons/resource/persons104124

Peter,  Hardi
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons192376

Chitta,  L. P.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, L., Zhang, J., Peter, H., Chitta, L. P., Su, J., Song, H., et al. (2018). Quasi-periodic Fast Propagating Magnetoacoustic Waves during the Magnetic Reconnection Between Solar Coronal Loops. The Astrophysical Journal Letters, 868(2): L33. doi:10.3847/2041-8213/aaf167.


Cite as: https://hdl.handle.net/21.11116/0000-0003-C319-5
Abstract
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we report the quasi-periodic fast magnetoacoustic waves propagating away from the reconnection region upward across the higher-lying open loops during the reconnection process. On 2012 January 19, reconnection between the higher-lying open loops and lower-lying closed loops took place, and two sets of newly reconnected loops formed. Thereafter, cooling and condensations of coronal plasma occurred in the magnetic dip region of higher-lying open loops. During the reconnection process, disturbances originating from the reconnection region propagate upward across the magnetic dip region of higher-lying loops with the mean speed and mean speed amplitude of 200 and 30 km s−1, respectively. The mean speed of the propagating disturbances decreases from ~230 km s−1 to ~150 km s−1 during the coronal condensation process, and then increases to ~220 km s−1. This temporal evolution of the mean speed anti-correlates with the light curves of the AIA 131 and 304 Å channels that show the cooling and condensation process of coronal plasma. Furthermore, the propagating disturbances appear quasi-periodically with a peak period of 4 minutes. Our results suggest that the disturbances represent the quasi-periodic fast propagating magnetoacoustic (QFPM) waves originating from the magnetic reconnection between coronal loops.