Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coronal Condensations Caused by Magnetic Reconnection between Solar Coronal Loops

MPG-Autoren
/persons/resource/persons104124

Peter,  Hardi
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons192376

Chitta,  L. P.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Li, L., Zhang, J., Peter, H., Chitta, L. P., Su, J., Xia, C., et al. (2018). Coronal Condensations Caused by Magnetic Reconnection between Solar Coronal Loops. The Astrophysical Journal Letters, 864(1): L4. doi:10.3847/2041-8213/aad90a.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-C31B-3
Zusammenfassung
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetically open structures, observed in AIA 171 Å images above the solar limb, move downward and interact with the lower-lying closed loops, resulting in the formation of dips in the former. An X-type structure forms at the interface. The interacting loops reconnect and disappear. Two sets of newly reconnected loops then form and recede from the MR region. During the MR process, bright emission appears sequentially in the AIA 131 and 304 Å channels repeatedly in the dips of higher-lying open structures. This indicates the cooling and condensation process of hotter plasma from ~0.9 MK down to ~0.6 MK, and then to ~0.05 MK, also supported by the light curves of the AIA 171, 131, and 304 Å channels. The part of higher-lying open structures supporting the condensation participate in the successive MR. Without support from underlying loops, the condensation then rains back to the solar surface along the newly reconnected loops. Our results suggest that the MR between coronal loops leads to the condensation of hotter coronal plasma and its downflows. MR thus plays an active role in the mass cycle of coronal plasma because it can initiate the catastrophic cooling and condensation. This underlines that the magnetic and thermal evolution has to be treated together and cannot be separated, even in the case of catastrophic cooling.