English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the error analyses of polarization measurements of the white-light coronagraph aboard ASO-S

MPS-Authors
/persons/resource/persons103978

Inhester,  Bernd
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Feng, L., Li, H., Inhester, B., Chen, B., Ying, B.-L., Lu, L., et al. (2019). On the error analyses of polarization measurements of the white-light coronagraph aboard ASO-S. Research in Astronomy and Astrophysics, 19(4): 059. doi:10.1088/1674-4527/19/4/59.


Cite as: https://hdl.handle.net/21.11116/0000-0003-C521-9
Abstract
The Advanced Space-based Solar Observatory (ASO-S) mission aims to explore the two most spectacular eruptions on the Sun: solar flares and coronal mass ejections (CMEs), and their magnetism. For the study of CMEs, the payload Lyman-alpha Solar Telescope (LST) has been proposed. It includes a traditional white-light coronagraph and a Lyman-alpha coronagraph which opens a new window to CME observations. Polarization measurements taken by white-light coronagraphs are crucial for deriving fundamental physical parameters of CMEs. To make such measurements, there are two options for a Stokes polarimeter which have been applied by existing white-light coronagraphs for space missions. One uses a single or triple linear polarizer, the other involves both a half-wave plate and a linear polarizer.We find that the former option is subject to less uncertainty in the derived Stokes vector propagating from detector noise. The latter option involves two plates which are prone to internal reflections and may have a reduced transmission factor. Therefore, the former option is adopted as our Stokes polarimeter scheme for LST. Based on the parameters of the intended linear polarizer(s) colorPol provided by CODIXX and the half-wave plate 2-APW-L2-012C by Altechna, it is further shown that the imperfect maximum transmittance of the polarizer significantly increases the variance amplification of Stokes vector by at least about 50% when compared with the ideal case. The relative errors of Stokes vector caused by the imperfection of colorPol polarizer and the uncertainty due to the polarizer assembly in the telescope are estimated to be about 5%. Among the considered parameters, we find that the dominant error comes from the uncertainty in the maximum transmittance of the polarizer.