Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device

MPG-Autoren
/persons/resource/persons195358

Robinson,  Tom
Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sturzenegger, F., Robinson, T., Hess, D., & Dittrich, P. S. (2016). Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device. Soft Matter, 12(23), 5072-5076. doi:10.1039/C6SM00049E.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-E233-4
Zusammenfassung
In this study we investigate the effect of shear force on lipid membranes induced by external fluid flow. We use giant unilamellar vesicles (GUVs) as simple cell models and chose a ternary lipid mixture that exhibit liquid-ordered and liquid-disordered domains. These domains are stained with different dyes to allow visualization of changes within the membrane after the application of flow. A microfluidic device served as a valuable platform to immobilize the vesicles and apply shear forces of a defined strength. Moreover, integration of valves allowed us to stop the flow instantaneously and visualize the relaxing domain patterns by means of high-resolution fluorescence microscopy. We observed the formation of transient, non-deterministic patterns of the formerly round domains during application of flow. When the flow is stopped, round domains are formed again on a time scale of ms to s. At longer time scales of several seconds to minutes, the domains fuse into larger domains until they reach equilibrium. These processes are accelerated with increasing temperature and vesicles with budding domains do not fuse unless the temperature is elevated. Our results show the strong effect of the flow on the lipid membrane and we believe that this phenomenon plays a crucial role in the processes of mechanotransduction in living cells.