English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Direct cell mass measurements expand the role of small microorganisms in nature.

MPS-Authors
/persons/resource/persons14912

Burg,  T.
Research Group of Biological Micro- and Nanotechnology, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

3069258.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Khachikyan, A., Milucka, J., Littmann, S., Ahmerkamp, S., Meador, T., Könneke, M., et al. (2019). Direct cell mass measurements expand the role of small microorganisms in nature. Methods, 85(4): e00493-19. doi:10.1128/AEM.00493-19.


Cite as: http://hdl.handle.net/21.11116/0000-0003-CB07-1
Abstract
Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically-derived mass-to-volume relationships and large discrepancies exist between the available empirical conversion factors. Here we report a significant non-linear relationship between carbon mass and cell volume (mcarbon = 197 × V0.46.; R2 = 0.95) based on direct cell mass, volume and elemental composition measurements of twelve prokaryotic species with average volumes between 0.011 – 0.705 μm3. The carbon mass density of our measured cells ranged from 250 to 1800 fg C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300 % higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (> 0.5 μm3) display a constant (carbon) mass-to-volume ratio whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally-determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass.