English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought

MPS-Authors
/persons/resource/persons185433

Valim,  Henrique
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons204739

McGale,  Erica
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons39141

Yon,  Felipe
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3907

Halitschke,  Rayko
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons39239

Fragoso,  Variluska
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4169

Schuman,  Meredith C.
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Valim, H., McGale, E., Yon, F., Halitschke, R., Fragoso, V., Schuman, M. C., et al. (2019). The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought. Plant Physiology, 181(1), 305-318. doi:10.1104/pp.19.00286.


Cite as: http://hdl.handle.net/21.11116/0000-0003-CBAD-6
Abstract
The highly conserved core circadian clock component TIMING OF CAB EXPRESSION 1 (TOC1) contextualizes environmental stress responses in plants, for example by gating abscisic acid (ABA) signaling and suppressing thermoresponsive growth. Selective interaction of TOC1 with PHYTOCHROME B (PHYB) under far-red-enriched light suggests a connection between circadian gating of light responses and sensitivity to ABA, an important regulator of growth and stress responses, including under drought. However, the fitness consequences of TOC1 function, particularly in the root, are poorly understood. Here, we used the desert annual, Nicotiana attenuata, to investigate the function of TOC1 in shoots and roots for maintaining fitness under drought, in both field and glasshouse experiments. Despite marked decreases in leaf water loss, TOC1-deficient (irTOC1) lines failed to maintain fitness in response to drought stress as measured by total seed capsule production. Restoring TOC1 transcript levels in shoots via micrografting was sufficient to restore wild-type drought responses under field conditions. Microarrays identified a co-expression module in leaves strongly linking red and far-red light signaling to drought responses in a TOC1-dependent manner, but experiments with phytochrome-deficient lines revealed that the effects of TOC1 deficiency under drought cannot be attributed to changes in red/far-red light perception alone. Taken together, these results elucidate the sophisticated, tissue-dependent role of the circadian clock in maintaining fitness in the face of long-term abiotic stresses such as drought.