Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Subregional mesiotemporal network topology is altered in temporal lobe epilepsy


Bernhardt,  Boris C.
Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada;
Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Bernhardt, B. C., Bernasconi, N., Hong, S.-J., Dery, S., & Bernasconi, A. (2016). Subregional mesiotemporal network topology is altered in temporal lobe epilepsy. Cerebral Cortex, 26(7), 3237-3248. doi:10.1093/cercor/bhv166.

Cite as: https://hdl.handle.net/21.11116/0000-0003-FB37-5
Temporal lobe epilepsy (TLE) is the most frequent drug-resistant epilepsy in adults and commonly associated with variable degrees of mesiotemporal atrophy on magnetic resonance imaging (MRI). Analyses of inter-regional connectivity have unveiled disruptions in large-scale cortico-cortical networks; little is known about the topological organization of the mesiotemporal lobe, the limbic subnetwork central to the disorder. We generated covariance networks based on high-resolution MRI surface- shape descriptors of the hippocampus, entorhinal cortex, and amygdala in 134 TLE patients and 45 age- and sex-matched controls. Graph-theoretical analysis revealed increased path length and clustering in patients, suggesting a shift toward a more regularized arrangement; fi ndings were reproducible after split-half assessment and across 2 parcellation schemes. Analysis of inter-regional correlations and module participation showed increased within-structure covariance, but decreases between structures, particularly with regards to the hippocampus and amygdala. While higher clustering possibly re fl ects topological consequences of axonal sprouting, decreases in interstructure covariance may be aconsequence of disconnection within limbic circuitry. Preoperative network parameters, specifically the segregation of the ipsilateral hippocampus, predicted long-term seizure freedom after surgery.