English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions

MPS-Authors
/persons/resource/persons185449

Hartwigsen,  Gesa
Lise Meitner Research Group Cognition and Plasticity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Moliadze_2019.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Moliadze, V., Sierau, L., Lyzhko, E., Stenner, T., Werchowski, M., Siniatchkin, M., et al. (2019). After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimulation, 12(6), 1464-1474. doi:10.1016/j.brs.2019.06.021.


Cite as: https://hdl.handle.net/21.11116/0000-0003-D058-F
Abstract
Introduction

Previous work in the language domain has shown that 10 Hz rTMS of the left or right posterior inferior frontal gyrus (pIFG) in the prefrontal cortex impaired phonological decision-making, arguing for a causal contribution of the bilateral pIFG to phonological processing. However, the neurophysiological correlates of these effects are unclear. The present study addressed the question whether neural activity in the prefrontal cortex could be modulated by 10 Hz tACS and how this would affect phonological decisions.
Methods

In three sessions, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the bilateral prefrontal cortex before task processing. Resting state EEG was recorded before and after tACS. We also recorded EEG during task processing.
Results

Relative to sham stimulation, 10 Hz tACS significantly facilitated phonological response speed. This effect was task-specific as tACS did not affect a simple control task. Moreover, 10 Hz tACS significantly increased theta power during phonological decisions. The individual increase in theta power was positively correlated with the behavioral facilitation after 10 Hz tACS.
Conclusion

Our results show a facilitation of phonological decisions after 10 Hz tACS over the bilateral prefrontal cortex. This might indicate that 10 Hz tACS increased task-related activity in the stimulated area to a level that was optimal for phonological performance. The significant correlation with the individual increase in theta power suggests that the behavioral facilitation might be related to increased theta power during language processing.