English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hecke module structure on first and top pro-p-Iwahori cohomology

MPS-Authors
/persons/resource/persons239132

Kozioł,  Karol
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1708.03013.pdf
(Preprint), 323KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kozioł, K. (2018). Hecke module structure on first and top pro-p-Iwahori cohomology. Acta Arithmetica, 186(4), 349-376. doi:10.4064/aa170903-24-3.


Cite as: https://hdl.handle.net/21.11116/0000-0003-D15A-C
Abstract
Let $p\geq 5$ be a prime number, $G$ a split connected reductive group defined over a $p$-adic field, and $I_1$ a choice of pro-$p$-Iwahori subgroup. Let $C$ be an algebraically closed field of characteristic $p$ and $\mathcal{H}$ the pro-$p$-Iwahori-Hecke algebra over $C$ associated to $I_1$. We compute the action of $\mathcal{H}$ on $\textrm{H}^1(I_1,C)$
and $\textrm{H}^{\textrm{top}}(I_1,C)$ when the root system of $G$ is
irreducible. We also give some partial results in the general case.