English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex

MPS-Authors

Arzt,  Marlene
Max Planck Florida Institute for Neuroscience, Max Planck Society;

Sakmann,  Bert
Max Planck Florida Institute for Neuroscience, Max Planck Society;

Meyer,  Hanno S.
Max Planck Florida Institute for Neuroscience, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Arzt, M., Sakmann, B., & Meyer, H. S. (2017). Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex. Cerebral Cortex, 1-12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28981591.


Cite as: https://hdl.handle.net/21.11116/0000-0003-D528-0
Abstract
In the vibrissal area of rodent somatosensory cortex, information on whisker stimulation is processed by neuronal networks in a corresponding cortical column. To understand how sensory stimuli are represented in a column, it is essential to identify cell types constituting these networks. Layer 6 (L6) comprises 25% of all neurons in a column. In rats, 430 of these are inhibitory interneurons (INs). Little is known about the axon projection of L6 INs with reference to columnar and laminar organization. We quantified axonal projections of L6 INs (n = 68) with reference to columns and layers in somatosensory cortex of rats. We found distinct projection types differentially targeting layers of a cortical column. The majority of L6 INs did not show a column-specific innervation, densely projecting to neighboring columns as well as the home column. However, a small fraction targeted granular and supragranular layers, where axon projections were confined to the home column. We also quantified putative innervation of pyramidal cells as a functional correlate of axonal distribution. Electrophysiological properties were not correlated to axon projection. The quantitative data on axonal projections and electrophysiological properties of L6 INs can guide future studies investigating cortical processing of sensory information at the single cell level.