English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization

MPS-Authors
/persons/resource/persons239279

Cao,  Qian
Bernhard Schmidt, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons203084

Kumru,  Baris
Bernhard Schmidt, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons179930

Schmidt,  Bernhard V. K. J.
Bernhard Schmidt, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Cao, Q., Kumru, B., Antonietti, M., & Schmidt, B. V. K. J. (2019). Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization. Macromolecules, 52(13), 4989-4996. doi:10.1021/acs.macromol.9b00894.


Cite as: https://hdl.handle.net/21.11116/0000-0003-E457-A
Abstract
Metal-free graphitic carbon nitride (g-CN) has attracted significant attention recently due to its multiple applications, such as photocatalysis, energy storage and conversion, and biomaterials, albeit formation of g-CN films is challenging. Herein, a “grafting to” route to graft polymer brushes onto g-CN via visible-light irradiation is described. Afterward, g-CN/polymer films can be obtained through spin coating on glass substrates. As such, the present material provides an improved process toward further application of g-CN in thin films. Moreover, an improved dispersibility in organic solvent was realized after grafting and functional groups (such as epoxides) were introduced to g-CN. Subsequently, the epoxy groups were utilized for further functionalization to adjust the surface polarity.