Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Instrumentation for solar spectropolarimetry: state of the art and prospects

MPG-Autoren
/persons/resource/persons103910

Feller,  Alex
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Iglesias, F. A., & Feller, A. (2019). Instrumentation for solar spectropolarimetry: state of the art and prospects. Optical Engineering, 58(8): 082417. doi:10.1117/1.OE.58.8.082417.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-DDB4-9
Zusammenfassung
Given its unchallenged capabilities in terms of sensitivity and spatial resolution, the combination of imaging spectropolarimetry and numeric Stokes inversion represents the dominant technique currently used to remotely sense the physical properties of the solar atmosphere and, in particular, its important driving magnetic field. Solar magnetism manifests itself in a wide range of spatial, temporal, and energetic scales. The ubiquitous but relatively small and weak fields of the so-called quiet Sun are believed today to be crucial for answering many open questions in solar physics, some of which have substantial practical relevance due to the strong Sun–Earth connection. However, such fields are very challenging to detect because they require spectropolarimetric measurements with high spatial (sub-arcsec), spectral (<100  mÅ), and temporal (<10  s) resolution along with high polarimetric sensitivity (<0.1  %   of the intensity). We collect and discuss both well-established and upcoming instrumental solutions developed during the last decades to push solar observations toward the above-mentioned parameter regime. This typically involves design trade-offs due to the high dimensionality of the data and signal-to-noise-ratio considerations, among others. We focus on the main three components that form a spectropolarimeter, namely, wavelength discriminators, the devices employed to encode the incoming polarization state into intensity images (polarization modulators), and the sensor technologies used to register them. We consider the instrumental solutions introduced to perform this kind of measurements at different optical wavelengths and from various observing locations, i.e., ground-based, from the stratosphere or near space.