English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Alkyne gem‐Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character

MPS-Authors
/persons/resource/persons221986

Biberger,  Tobias
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons239303

Peil,  Sebastian
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216853

Guthertz,  Alexandre
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)

ange201904255-sup-0001-misc_information.pdf
(Supplementary material), 6MB

Citation

Biberger, T., Gordon, C., Leutzsch, M., Peil, S., Guthertz, A., Copéret, C., et al. (2019). Alkyne gem‐Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character. Angewandte Chemie International Edition, 58(26), 8845-8850. doi:10.1002/anie.201904255.


Cite as: http://hdl.handle.net/21.11116/0000-0004-5750-0
Abstract
Parahydrogen (p‐H2) induced polarization (PHIP) NMR spectroscopy showed that [CpXRu] complexes with greatly different electronic properties invariably engage propargyl alcohol derivatives into gem‐hydrogenation with formation of pianostool ruthenium carbenes; in so doing, less electron rich CpX rings lower the barriers, stabilize the resulting complexes and hence provide opportunities for harnessing genuine carbene reactivity. The chemical character of the resulting ruthenium complexes was studied by DFT‐assisted analysis of the chemical shift tensors determined by solid‐state 13C NMR spectroscopy. The combined experimental and computational data draw the portrait of a family of ruthenium carbenes that amalgamate purely electrophilic behavior with characteristics more befitting metathesis‐active Grubbs‐type catalysts.