English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Patching laser-reduced graphene oxide with carbon nanodots

MPS-Authors
/persons/resource/persons229032

Strauß,  Volker
Volker Strauß, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons239307

Badamdorj,  Bolortuya
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons206227

Heil,  Tobias
Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Strauß, V., Muni, M., Borenstein, A., Badamdorj, B., Heil, T., Kowal, M. D., et al. (2019). Patching laser-reduced graphene oxide with carbon nanodots. Nanoscale, 11(26), 12712-12719. doi:10.1039/C9NR01719D.


Cite as: https://hdl.handle.net/21.11116/0000-0003-E75D-1
Abstract
Three-dimensional graphenes are versatile materials for a range of electronic applications and considered among the most promising candidates for electrodes in future electric double layer capacitors (EDLCs) as they are expected to outperform commercially used activated carbon. Parameters such as electrical conductivity and active surface area are critical to the final device performance. By adding carbon nanodots to graphene oxide in the starting material for our standard laser-assisted reduction process, the structural integrity (i.e. lower defect density) of the final 3D-graphene is improved. As a result, the active surface area in the hybrid starting materials was increased by 130% and the electrical conductivity enhanced by nearly an order of magnitude compared to pure laser-reduced graphene oxide. These improved material parameters lead to enhanced device performance of the EDLC electrodes. The frequency response, i.e. the minimum phase angle and the relaxation time, were significantly improved from −82.2° and 128 ms to −84.3° and 7.6 ms, respectively. For the same devices the specific gravimetric device capacitance was increased from 110 to a maximum value of 214 F g−1 at a scan rate of 10 mV s−1.