User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Gas-Phase Synthesis and Reactivity of Ligated Group 10 Ions in the Formal +1 Oxidation State


Greis,  Kim
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne;
Institut für Chemie, Humboldt-Universität zu Berlin;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Greis, K., Yang, Y., Canty, A. J., & O’Hair, R. A. J. (2019). Gas-Phase Synthesis and Reactivity of Ligated Group 10 Ions in the Formal +1 Oxidation State. Journal of the American Society for Mass Spectrometry. doi:10.1007/s13361-019-02231-5.

Cite as: http://hdl.handle.net/21.11116/0000-0003-E772-8
Electrospray ionization of the group 10 complexes [(phen)M(O2CCH3)2] (phen=1,10-phenanthroline, M = Ni, Pd, Pt) generates the cations [(phen)M(O2CCH3)]+, whose gas-phase chemistry was studied using multistage mass spectrometry experiments in an ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reactions (IMR). Decarboxylation of [(phen)M(O2CCH3)]+ under CID conditions gen-erates the organometallic cations [(phen)M(CH3)]+, which undergo bond homolysis upon a further stage of CID to generate the cations [(phen)M] in which the metal center is formally in the +1 oxidation state. In the case of [(phen)Pt(CH3)]+, the major product ion [(phen)H]+ was formed via loss of the metal carbene Pt=CH2. DFT calculated energetics for the competition between bond homolysis and M=CH2 loss are consistent with their experimentally observed branching ratios of 2% and 98% respectively. The IMR of [(phen)M] with O2,N2, H2O, acetone, and allyl iodide were examined. Adduct formation occurs for O2, N2, H2O, and acetone. Upon CID, all adducts fragment to regenerate [(phen)M], except for [(phen)Pt(OC(CH3)2)], which loses a methyl radical to form [(phen)Pt(OCCH3)]+ which upon a further stage of CID regenerates [(phen)Pt(CH3)]+ via CO loss. This closes a formal catalytic cycle for the decomposition of acetone into CO and two methyl radicals with [(phen)Pt] as catalyst. In the IMR of [(phen)M] with allyl iodide, formation of [(phen)M(CH2CHCH2)]+ was observed for all three metals, whereas for M = Pt also [(phen)Pt(I)]+ and [(phen)Pt(I)2(CH2CHCH2)]+ were observed. Finally, DFTcalculated reaction energetics for all IMR reaction channels are consistent with the experimental observations.