English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Holocene water mass changes in the Labrador Current

MPS-Authors
/persons/resource/persons211488

Repschläger,  Janne
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lochte, A. A., Repschläger, J., Seidenkrantz, M.-S., Kienast, M., Blanz, T., & Schneider, R. R. (2019). Holocene water mass changes in the Labrador Current. The Holocene, 29(4), 676-690. doi:10.1177/0959683618824752.


Cite as: http://hdl.handle.net/21.11116/0000-0003-EBE0-7
Abstract
The Labrador Current is part of the anticlockwise subpolar gyre and plays a major role in the formation of North Atlantic Deep Water. It is influenced by the West Greenland and Baffin currents supplying warmer Atlantic and cold polar waters, respectively. During the early Holocene, at the final stage of the last deglaciation, meltwater and iceberg discharge caused highly variable conditions in the Labrador Current. In order to assess its sensitivity to such freshening, this study provides a well-resolved Holocene paleoclimatic record from the Labrador Shelf. Based on benthic foraminiferal faunal and alkenone biomarker analyses, we differentiated four distinct climatic periods in the western Labrador Sea. From 8.9 to 8.6 ka BP, the Labrador Shelf was dominated by polar water outflow from Baffin Bay and covered by perennial sea ice. Between 8.6 and 7.4 ka BP, a strong subsurface inflow of warmer Atlantic water masses is ascribed to an intensification and redirection of the West Greenland Current. At 7.4 ka BP, the decreased influence of Atlantic water masses on the Labrador Shelf marks the establishment of winter convection leading to the formation of Labrador Sea Water in the central basin. Concurrently, an intensified polar water outflow through the Canadian Gateways strengthened the inner Labrador Current, and higher primary productivity suggests longer spring blooms because of a shorter sea-ice season during the Holocene Thermal Maximum. In the late Holocene after 3 ka BP, periodic fluctuations of primary productivity may tentatively be correlated with stronger and weaker northwesterly winds.