Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations

MPG-Autoren
/persons/resource/persons101301

Tanahrte,  Meryem
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons193091

Bacer,  Sara
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  Andrea
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tanahrte, M., Bacer, S., Burrows, S. M., Huffman, J. A., Pierce, K. M., Pozzer, A., et al. (2019). Global modeling of fungal spores with the EMAC chemistryclimate model: uncertainties in emission parametrizations and observations. Atmospheric Chemistry and Physics Discussions, 19. doi:10.5194/acp-2019-251.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-F260-F
Zusammenfassung
Primary biological aerosol particles (PBAPs) may impact human health and aerosol-cloud-climate interactions. The role of PBAPs in the earth system is associated with large uncertainties, for example of source estimates and the atmospheric lifetime. We used a chemistry-climate model to simulate PBAPs in the atmosphere including bacteria and fungal spores. Three fungal spore emission parameterizations have been evaluated against an updated set of spore counts synthesized from observations reported in the literature. The comparison indicates an optimal fit for the emission parameterization proposed by Heald and Spracklen (2009) and adapted by Hoose et al. (2010) for particle sizes of 5 µm or 3 µm, although the model still overpredicts PBAP concentrations in some locations. The correlations between the spore count observations and meteorological parameters simulated by the model show a strong dependence on the leaf area index in non-urban areas and the specific humidity in urban areas. Additional evaluation was performed by comparing our combined bacteria and fungal spore simulations to a global dataset of fluorescent biological aerosol particle (FBAP) concentrations. The model predicts the total sum of measured PBAP concentrations relatively well, typically within a factor of two of FBAP. Further, the modeled fungal spore results deviate from the FBAP concentrations when used as a rough proxy for spores, depending on the particle size used in the parametrization. Uncertainties related to technical aspects of the FBAP and direct-counting spore measurements challenge the ability to further refine quantitative comparison on this scale. Additional long-term data of better quality are needed to improve emission parameterizations.