Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Forschungspapier

Comparison of Aircraft Measurements during GoAmazon2014/5 and ACRIDICON-CHUVA campaign

MPG-Autoren
/persons/resource/persons101358

Weigel,  Ralf
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  Johannes
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204098

Schulz,  Christiane
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203102

Pöhlker,  Mira L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230413

Andreae,  Meinrat O.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons104597

Pöhlker,  Christopher
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101066

Klimach,  Thomas
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100858

Borrmann,  Stephan
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mei, F., Wang, J., Comstock, J. M., Weigel, R., Krämer, M., Mahnke, C., et al. (2019). Comparison of Aircraft Measurements during GoAmazon2014/5 and ACRIDICON-CHUVA campaign. Atmospheric Measurement Techniques Discussions, 12. doi:10.5194/amt-2019-17.


Zusammenfassung
The indirect effect of atmospheric aerosol particles on the Earth’s radiation balance remains one of the most uncertain components affecting climate change throughout the industrial period. This issue is partially a result of the incomplete understanding of aerosol-cloud interactions. One objective of the GoAmazon2014/5 and ACRIDICON-CHUVA projects was to improve the understanding of the influence of the emissions of the tropical megacity of Manaus (Brazil) on the surrounding atmospheric environment of the rainforest and to investigate its role in the life cycle of convective clouds. During one of the intensive observation periods (IOPs) in the dry season from September 1 to October 10, 2014, comprehensive instrument suites collected data from several ground sites. In a coordinated way, the advanced suites of sophisticated instruments were deployed in situ both from the U.S. Department of Energy Gulfstream-1 (G1) aircraft and the German High Altitude and Long-Range Research Aircraft (HALO) during three coordinated flights on September 9, 21, and October 1. Here we report on the comparison of measurements collected by the two aircraft during these three flights. Such comparisons are difficult to obtain, but they are essential for assessing the data quality from the individual platforms and quantifying their uncertainty sources. Similar instruments mounted on the G1 and HALO collected vertical profile measurements of aerosol particles number concentration and size distribution, cloud condensation nuclei concentration, ozone, and carbon monoxide concentration, cloud droplet size distribution, and downward solar irradiance. We find that the above measurements from the two aircraft agreed within the range given by the measurement uncertainties. Aerosol chemical composition measured by instruments on HALO agreed with the corresponding G1 data collected at high altitudes only. Furthermore, possible causes of discrepancies between the data sets collected by the G1 and HALO instrumentation are addressed in this paper. Based on these results, criteria for meaningful aircraft measurement comparisons are discussed.