English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

MPS-Authors
/persons/resource/persons210489

Jørgensen,  Bo Barker
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210844

Weber,  Andreas
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210910

Zopfi,  Jakob
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jørgensen, B. B., Weber, A., & Zopfi, J. (2001). Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research Part I-Oceanographic Research Papers, 48(9), 2097-2120.


Cite as: https://hdl.handle.net/21.11116/0000-0003-FD5F-7
Abstract
Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate–methane transition at 2–4 m depth. Sulfate reduction rates were measured experimentally with 35SO42−, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments without sulfide reoxidation, modeling strongly underestimated the high reduction rates near the sediment surface. A hybrid modeling approach, in which experimentally measured rates in the upper sediment layers force a model that includes also the deeper layers, probably provides the most realistic estimate of sulfate reduction rates. Areal rates of sulfate reduction were 0.65–1.43 mmol SO42− m−2 d−1, highest in sediments just below the chemocline. Anaerobic methane oxidation accounted for 7–11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet the process was very sluggish with turnover times of methane within the sulfate–methane transition zone of 20 yr or more.