English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Galois cohomology of Fontaine rings

MPS-Authors
/persons/resource/persons235713

Lodh,  Rémi Shankar
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lodh, R. S. (2007). Galois cohomology of Fontaine rings. PhD Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.


Cite as: https://hdl.handle.net/21.11116/0000-0004-2B9C-D
Abstract
Let $V$ be a complete discrete valuation ring of mixed characteristic. We express the crystalline cohomology of the special fibre of certain smooth affine $V$-schemes $X=Spec(R)$ tensored with an appropriate ring of $p$-adic periods as the Galois cohomology of the fundamental group of the geometric generic fibre $\pi_1(X_{\bar{V}[1/p]})$ with coefficients in a Fontaine ring constructed from $R$. This is based on Faltings' approach to $p$-adic Hodge theory (the theory of almost étale extensions). Using this we deduce maps from $p$-adic étale cohomology to crystalline cohomology of smooth $V$-schemes. The results are more general, as the semi-stable case is also considered. In the end we derive an alternative proof of the theorem of Tsuji (the semi-stable conjecture of Fontaine-Jannsen).