Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Congruence among generalized Bernoulli numbers.

MPG-Autoren

Urbanowicz,  Jerzy
Max Planck Society;

/persons/resource/persons236497

Zagier,  Don
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Szmidt, J., Urbanowicz, J., & Zagier, D. (1995). Congruence among generalized Bernoulli numbers. Acta Arithmetica, 71(3), 273-278.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-38F5-9
Zusammenfassung
Let χ denote a primitive quadratic character mod M (or the trivial character) and let d be a fundamental discriminant (or 1). Denote by χ' the character mod M |d | induced by χ. The authors consider the generalized Bernoulli numbers Bm, χ' and the corresponding Bernoulli polynomials Bm, χ' (X) at X = d. From a certain set of these numbers they form an expression P(d,m), too complicated to reproduce here, which is in fact a linear combination (with integer coefficients) of Bm, χ' and Bm, χ' (d), where m is a fixed integer ≥ 1. The expression also depends upon two integral parameters to be chosen under some restrictions. The authors prove that P(d,m) \in 2^h 3^km \bbfZ, where h and k are given nonnegative integers. As a consequence one has a number of divisibility statements for Bm, χ/m and so for the class numbers of quadratic fields. Results of the same type, including special cases of the present result, have previously appeared in several papers [e.g. \it K. Hardy and \it K. S. Williams, Acta Arith. 47, 263-276 (1986; Zbl 0598.12003)].\par The proof involves some clever manipulations related to the series \sum^∞n = 1 χ (n) e^nt.