English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the coefficients of the minimal polynomials of Gaussian periods.

MPS-Authors
/persons/resource/persons236497

Zagier,  Don
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gupta, S., & Zagier, D. (1993). On the coefficients of the minimal polynomials of Gaussian periods. Mathematics of Computation, 60(201), 385-398.


Cite as: https://hdl.handle.net/21.11116/0000-0004-3907-5
Abstract
Using standard notation let ℓ be a prime, m a divisor of ℓ-1, ω= ζ+ ζ\sp λ+ ⋅s+ ζ\spλ\spm-1, where ζ= e\sp2π i/ℓ and λ is a primitive m-th root of unity \text mod ℓ, so that ω generates a subfield k of \bbfQ (ζ) of degree (ℓ-1) /m. \par To follow the authors' abstract. The paper considers the reciprocal minimum polynomial F\sbℓ,m (X)= N\sbk/ \bbfQ (1-ω X) of ω over \bbfQ and shows that for fixed m and all N, F\sbℓ,m (X)\equiv (B\sb m (x)\sp ℓ/ (1-mX) )\sp1/m\bmod X\sp N for all but finitely many ``exceptional primes'' ℓ (depending on m and N), where B\sb m (X) is a power series in X defined only on m. Further a method of computing this exceptional set of primes is given. \par It is worth noting that the cases m=3,4 of some of the results presented were proved by D. and E. Lehmer and the case m=p by S. Gurak. The case m=2 was essentially known to Gauss.