English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Jacobi forms and a certain space of modular forms.

MPS-Authors
/persons/resource/persons236497

Zagier,  Don
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Skoruppa, N.-P., & Zagier, D. (1988). Jacobi forms and a certain space of modular forms. Inventiones Mathematicae, 94(1), 113-146.


Cite as: https://hdl.handle.net/21.11116/0000-0004-394A-A
Abstract
Let M\sb2k-2(m) be the space of holomorphic modular forms of weight 2k-2 on Γ\sb 0(m) and let J\sbk,m be the space of Jacobi forms of weight k and index m in the sense of Eichler-Zagier [\it M. Eichler and \it D. Zagier, The theory of Jacobi forms (Prog. Math. 55)(Birkhäuser 1985; Zbl 0554.10018)]. The main point in the proof of the Saito-Kurokawa conjecture was the isomorphism between J\sbk,1 and M\sb2k-2(1) as modules over the Hecke algebra. \par In the impressive paper under review the authors deal with the general case for the index m. There exists a canonical subspace \frak M\sp- \sb2k-2(m) of M\sp-\sb2k-2(m), which can be described by properties of the Euler factors of the L-series attached to a modular form and which contains the space of newforms. Here ``-'' means that the L-series satisfies a functional equation under s\mapsto 2k-2-s with root number -1. The Main Theorem says that J\sbk,m and \frak M\sp- \sb2k-2(m) are isomorphic as modules over the Hecke algebra. \par In \S 1 the trace of the Hecke operator T(ℓ) on J\sbk,m with ℓ relatively prime to m is computed as an application of the general trace formula for Jacobi forms. Then the Eichler-Selberg trace formula is used in order to express \texttr(T(ℓ),J\sbk,m) as linear combinations of \texttr(T(ℓ),M\sb2k-2\spnew,-(m')), m'\vert m. In \S 3 the isomorphy is proved, where the proof moreover gives a collection of explicit lifting maps. In the Appendix the authors derive a formula for a certain class number involving Gauss sums associated to binary quadratic forms.