User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity


Pfeiffer,  Harald P.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

(Preprint), 8MB

Supplementary Material (public)
There is no public supplementary material available

Vincent, T., Pfeiffer, H. P., & Fischer, N. L. (2019). hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Physical Review D, 100(8): 084052. doi:10.1103/PhysRevD.100.084052.

Cite as: http://hdl.handle.net/21.11116/0000-0004-3A87-3
A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer boundary near spatial infinity. We explore the properties of the code on some test problems, including one mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black holes.