Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient simulation of overtones and combination bands in resonant Raman spectra

MPG-Autoren
/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216815

Izsák,  Róbert
Research Group Izsák, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Souza, B., Farias, G., Neese, F., & Izsák, R. (2019). Efficient simulation of overtones and combination bands in resonant Raman spectra. The Journal of Chemical Physics, 150(21): 214102. doi:10.1063/1.5099247.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-4069-E
Zusammenfassung
In this work, we describe how Resonant Raman (RR) spectra can be predicted with good accuracy using the path integral formulation for the harmonic oscillator, including the Herzberg-Teller and Duschinsky rotation effects. In particular, we will focus on approximations to make these calculations more efficient and expand the current methodology to include overtones and combination bands in the final prediction. After outlining the theory, we explain how it can be made into a black-box method and discuss the approximations that rely on its intrinsic parameters. It is shown that the latter can improve the efficiency by orders of magnitude, without substantial loss in accuracy. We will also show that the predicted RR spectra are in good agreement with experiment for both the intensity and position of spectral peaks, even for higher order vibronic excitations. Thus, the method proposed here can be used as a computational aid to experiments to improve the quality of analysis and theoretical understanding of RR.