Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Proton Translocation via Tautomerization of Asn298 During the S2–S3 State Transition in the Oxygen-Evolving Complex of Photosystem II

MPG-Autoren
/persons/resource/persons237774

Chrysina,  Maria
Institute of Nanoscience & Nanotechnology, NCSR “Demokritos”;
Research Department DeBeer, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216808

De Mendonça Silva,  Juliana Cecília
Max-Planck-Institut für Chemische Energiekonversion;
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chrysina, M., De Mendonça Silva, J. C., Zahariou, G., Pantazis, D. A., & Ionnidis, N. (2019). Proton Translocation via Tautomerization of Asn298 During the S2–S3 State Transition in the Oxygen-Evolving Complex of Photosystem II. The Journal of Physical Chemistry B, 123(14), 3068-3078. doi:10.1021/acs.jpcb.9b02317.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-4C53-A
Zusammenfassung
In biological water oxidation, a redox-active tyrosine residue (D1-Tyr161 or YZ) mediates electron transfer between the Mn4CaO5 cluster of the oxygen-evolving complex and the charge-separation site of photosystem II (PSII), driving the cluster through progressively higher oxidation states Si (i = 0–4). In contrast to lower S-states (S0, S1), in higher S-states (S2, S3) of the Mn4CaO5 cluster, YZ cannot be oxidized at cryogenic temperatures due to the accumulation of positive charge in the S1 → S2 transition. However, oxidation of YZ by illumination of S2 at 77–190 K followed by rapid freezing and charge recombination between YZ and the plastoquinone radical QA•– allows trapping of an S2 variant, the so-called S2trapped state (S2t), that is capable of forming YZ at cryogenic temperature. To identify the differences between the S2 and S2t states, we used the S2tYZ intermediate as a probe for the S2t state and followed the S2tYZ/QA•– recombination kinetics at 10 K using time-resolved electron paramagnetic resonance spectroscopy in H2O and D2O. The results show that while S2tYZ/QA•– recombination can be described as pure electron transfer occurring in the Marcus inverted region, the S2t → S2 reversion depends on proton rearrangement and exhibits a strong kinetic isotope effect. This suggests that YZ oxidation in the S2t state is facilitated by favorable proton redistribution in the vicinity of YZ, most likely within the hydrogen-bonded YZ–His190–Asn298 triad. Computational models show that tautomerization of Asn298 to its imidic acid form enables proton translocation to an adjacent asparagine-rich cavity of water molecules that functions as a proton reservoir and can further participate in proton egress to the lumen.