English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder

MPS-Authors
/persons/resource/persons221838

Snijders Blok,  Lot
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Human Genetics Department, Radboud University Medical Center;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons32809

Derizioti,  Pelagia
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Locator
There are no locators available
Fulltext (public)

snijdersblok_2019_etal.pdf
(Publisher version), 3MB

Supplementary Material (public)

1-s2.0-S0002929719302320-mmc1.pdf
(Supplementary material), 665KB

1-s2.0-S0002929719302320-mmc2.xlsx
(Supplementary material), 25KB

Citation

Snijders Blok, L., Kleefstra, T., Venselaar, H., Maas, S., Kroes, H. Y., Lachmeijer, A. M. A., et al. (2019). De novo variants disturbing the transactivation capacity of POU3F3 cause a characteristic neurodevelopmental disorder. The American Journal of Human Genetics, 105(2), 403-412. doi:10.1016/j.ajhg.2019.06.007.


Cite as: http://hdl.handle.net/21.11116/0000-0004-40BB-1
Abstract
POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.