English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil

MPS-Authors

Liu,  P.
Emeriti Methanogenic Degradation and Microbial Metabolism of Trace Gases, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254614

Pommerenke,  B.
Department of Biogeochemistry, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254197

Conrad,  R.
Emeriti Methanogenic Degradation and Microbial Metabolism of Trace Gases, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, P., Pommerenke, B., & Conrad, R. (2018). Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil. ENVIRONMENTAL MICROBIOLOGY, 20(1), 337-354. doi:10.1111/1462-2920.14001.


Cite as: https://hdl.handle.net/21.11116/0000-0004-45AC-D
Abstract
Methane is an important greenhouse gas and acetate is the most important intermediate (average 70%) of the carbon flow to CH4 in paddy fields. Sulfate (e.g., gypsum) application can reduce CH4 emissions up to 70%. However, the effect of gypsum application on acetate degradation and the microbial communities involved are unclear. Therefore, we studied acetate-dependent sulfate reduction in anoxic microcosms of Italian rice paddy soil, combining profiling of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts and rRNA based stable isotope probing (SIP) analysis. Methane production was completely inhibited by gypsum in the absence of exogenous acetate. Amended acetate (either 13 C labelled or non-labelled) was stoichiometrically coupled to sulfate reduction or CH4 production. With methyl fluoride in the presence of sulfate, added propionate and butyrate were incompletely oxidized to acetate, which transiently accumulated. After the depletion of propionate and butyrate the accumulated acetate was rapidly consumed. The relative abundance of dsrB and 16S rRNA genes and transcripts from Syntrophobacteraceae (Desulfovirga spp., Syntrophobacter spp. and unclassified Syntrophobacteraceae) increased upon addition of gypsum and acetate. Simultaneously, Syntrophobacteraceae affiliated species were significantly labelled with 13 C. In addition, minor groups like Desulforhabdus spp., Desulfobacca spp. and Desulfotomaculum spp. substantially incorporated 13 C into their nucleic acids. The relative abundance of Desulfovibrio spp. slightly increased upon gypsum amendments. However, 13 C labelling of Desulfovibrio spp. was only moderate. In summary, Syntrophobacteraceae affiliated species were identified as the major acetotrophic sulfate reducers (SRB) in Italian paddy soil. The identification of these SRB as dominant acetate degraders well explained the scenarios of competition between SRB and acetoclastic methanogens as observed in rice paddy soil.